
ANDROID SDK INSTALLER 1

Implementation of Android SDK into Debian Linux

Adnan Hodzic

State University of New York at Canton

CITA 481

May, 2012

ANDROID SDK INSTALLER 2

Abstract

Android is the biggest and fastest growing mobile operating system and on top of it all

it's based on Linux. But even besides this fact support for devices running it as well as its

development on Linux, Android's “home” platform is far from ideal. It's important to note that

Linux is fully and officially supported by Google (its parent company) and Open Handset

Alliance providing all the necessary tools and necessary documentation.

However there's a gap in this whole process, gap which constrains Android users

or/and developers to complete this whole process in a error free and semi-automated manner

by selecting which component they would you like to have installed and fully working with a

single hit of a button. There are legions of Android users/developers who are experts in

Android systems without much or any expertise in Linux, individuals who are using Linux

strictly because it makes their business or home use much less expensive, more secure,

reliable and other factors which Linux provides. With more and more of Linux distributions

becoming oriented to new users to even a degree of this factor becoming a trend, it's

important that these individuals have tools which will enable them to work on things they are

experts at in out of the box solutions without fiddling with any of Linux internals or having a

need to configuring anything.

 Thus, the goal of this project is to make an installer which will seamlessly implement

and integrate Android SDK as well as its components without its end user having to do

anything but install the package and give their answers when prompted. Installer isn't

designed to be strictly developer oriented and should provide some features from which even

a regular user can benefit from.

At the time of writing this paper I successfully completed first version of an installer

“android-sdk-linux” version 0.1 (Appendix: android-sdk-installer)

ANDROID SDK INSTALLER 3

Installer itself consists of few parts which are:

 Installation and configuration (implementation and integration) of Android SDK

(Software Development Kit) into Debian Linux

 Installation and configuration of ADT (Android Developers Tool) plug-in for Eclipse

IDE

 Ability to install hardware device support for all Android devices

 Extra features such as adding support for MTP (Media Transfer Protocol)

ANDROID SDK INSTALLER 4

Table of Contents

Abstract ..2

Table of Contents ..4

Chapter 1...5

What is Android? ..5

What is Debian Linux? ...7

Explain difference between Android and Debian ... 10

Android gets merged with Linux kernel main tree ... 11

Android SDK .. 12

Chapter 2... 14

Eclipse ADT plug-in installation ... 18

Explain how this process differs on Windows, Mac OS X and Linux... 21

How the idea of an “android-sdk-installer” was born? ... 24

What kind of advantage does this bring to Linux? ... 25

Application Design and components function .. 26

Chapter 3... 39

Which programming languages were used in creation of this application? ... 39

How was this platform chosen from technical stand point? .. 39

Standard application installation procedure on Linux .. 42

Application creation and installation in Debian ... 44

Application implementation into Debian repository sources .. 46

Conclusion.. 48

List of References ... 50

Appendix: android-sdk-installer .. 53

ANDROID SDK INSTALLER 5

Chapter 1

What is Android?

Android is Linux based operating system with primary focus on mobile devices such

as smartphones and tablets, even though Android has proven its uses in many other devices

such as TV's (Google TV). It is also speculated that this focus might change to netbook and

notebook market with upcoming version of Android v5.0 codename: “Jelly Bean”.

Android Inc. was founded in October 2003 in Palo Alto, California with Andy Rubin

in the lead along with Chris White, Rich Miner and Nick Sears with most of them coming

from companies related to communications and telephony. Their main mission was to

developer a “smarter” mobile device, along with mostly keeping their work under seal of

secrecy, except the fact that they were working on developing software for mobile devices.

Later on in August, 2005 Android Inc. was acquired by Google Inc, becoming one of its

subsidiaries, again with most of its work remaining under the veal of secrecy even though

many speculated that Google was preparing to enter mobile phone market.

Beginning of November 2007, Open Handset Alliance was formed; a consortium

which consisted of several big companies such as Google, Intel, Samsung, HTC, Motorola,

Nvidia and T-Mobile just to name a few. Couple of days later Android 1.0 beta was released.

It was a new mobile operating system developed by Google and Open Handset Alliance,

which wasn't released for any particular phone and it was mainly embraced and further

researched by the developer community. It was released under Open Source license (Apache

Software License, 2.0) which is lead by “Android Open Source Project (AOSP)” which is

assigned for its development and maintenance. For the further reference, it may be worth

nothing that first version of Apple iPhone along with first version of iOS was released in the

ANDROID SDK INSTALLER 6

summer of 2007.

 Following year Open Handset Alliance was joined by another dozen of leading

companies in technology and mobile communication fields, today consortium numbers 84

companies. And it wasn't until this year (2008) that Android v1.0 was released, which was its

truly first milestone and which was released on Android's first device “HTC Dream (G1)”,

same was done with Android v1.1 which was released in beginning of 2009 and was initially

released for a single device (T-Mobile G1).

However it wasn't until beginning of April in 2009, that Android started giving their

new releases codenames based on dessert names following alphabetical order, it wasn't until

Android 1.5 “Cupcake” that Android started spreading to number of devices and

manufacturers and thus allowing Android to slowly enter mainstream when it comes to

market share.

To give you a solid comparison, strategy of open standards and open source gave

Google an immense comparative advantage in terms to its main competitor Apple, unlike

iPhone which was tailored for a single device and single maker with closed source operating

system. Android was embraced by number of leading mobile device makers, allowing them to

easily customize their own version of the operating system their device is running on. Thus in

the end allowing Android to appear in many shapes and forms.

In very short period of time, Android became one of the fastest growing operating

systems for mobile devices, according to Google's Senior Vice President of Mobile Andy

Rubin to this date there are more than 300 million activated devices with around 700.000

devices being activated each day in 137 countries and regions. It has more than 500.000

applications being available for the same platform with over 10 billion downloads.

 These numbers lead to very enviable numbers when it came to market share as well,

ANDROID SDK INSTALLER 7

according to latest information it is believed that Android has topped 50% market share, with

iPhone lagging behind with 30.2%, RIM's Blackberry with 13.4% leaving Microsoft's

Windows Phone with only 3.9%.

What is Debian Linux?

Debian Linux is one of the oldest (18+ years) and most influential Linux distributions

with more than 120 active derivatives, one of them being Ubuntu which is currently by far the

most popular Linux distribution. It has more than 30.000 official software packages spreading

over 11 computer architectures.

Debian was born on August 16th 1993 and was announced by its creator Ian Murdock;

name was made out his (then) girlfriend Debra and his first name Ian: Deb + Ian. Followed by

distributions release Ian also released the Debian Manifesto which outline the new operating

system as well as his intentions along with the fact that it was of an open manner released in

spirit of GNU/Linux, thus to this date you can still see Debian name being written in “Debian

GNU/Linux” form. Before release of Debian only Linux distribution which consisted of

compiled various software packages was SLS (Softlanding Linux System) which was poorly

maintained and had numerous bugs. Distribution that was later on born from SLS is also one

of the oldest active Linux distributions today, Slackware. Due to the way it was announced

and in accordance to its manifesto soon after it was released Debian was picked up by the

community and many other developers and it is believed Debian is the first community based

Linux distribution.

It is well known for its strict adherence to philosophy of Unix and Free Software,

besides Linux kernel there is a port to FreeBSD kernel with standard set of Debian packages

named “Debian GNU/kFreeBSD”. Debian is available in more than 65 languages and also

ANDROID SDK INSTALLER 8

consists of more than 10 available desktop environments to choose from with GNOME being

the default one.

Another interesting thing about Debian is that it's made by more than a thousands of

volunteers and is being supported by couple of nonprofit organizations, one of the most

notable ones being the SPI (Software in Public Interest) thus it may be openly said Debian

organization is completely decentralized in its organizational structure and all the work is

done “online” (remotely) by developers coming from all parts of the world.

Once a year, developers meet in person on a conference called “DebConf” to discuss

how to resolve current issues and to discuss their plans for future Debian releases, these

conferences are sponsored by one of the biggest and leading companies in world today such

as Google, HP, Intel and et cetera, it's also important to note that a lot of Debian developers

work in those same companies. Author of this text was an event organizer, local team founder

and leader of last DebConf11 which after locations such as New York City, Edinburgh,

Helsinki, Toronto and others, conference was held in Banja Luka, Bosnia and Herzegovina.

Interesting details regarding Debian is also cost of its development, since it's all done

by volunteers it can be and is labeled as free but if we use a COCOMO model to calculate its

development as of February 2012 production costs for Debian Wheezy (current version it's

 Figure 1: DebConf11 Group photo

ANDROID SDK INSTALLER 9

being worked on) it would cost ~19 billion US dollars, with each upstream source code author

worth an average of ~1.1 million US dollars. Interesting detail because the production cost of

19$ billion is given to the community by the price tag of “free”.

Its development procedure model is a very unique one and is widespread within other

projects as well. Where project distribution can be found in couple of repositories, such as:

“experimental”, “unstable”, “testing” and “stable”. But is generally divided into three main

branches: stable, testing and unstable.

With experimental and unstable usually being almost the exact versions released by

their upstream authors. However experimental is being periodically used and is mostly used

for purely experimental purposes. While unstable codename “Sid” is mainly used by Debian

developers and users who want the latest “bleeding edge” software, needless to say this

software is prone to bugs and problems. Although many argue that Unstable doesn't deserve

its name as even in this state it's known to be more stable than most of the other “stable”

distribution releases out there. After software has been thoroughly tested or none of the bugs

have been detected within 2 weeks it's automatically pushed into Testing which as the name

says is mostly used for testing purposes and even though it's labeled as testing this is stable

software and it's important to note that Testing is what's about to become next Stable release.

Stable is mostly used on servers and business environment, and more conservative users who

prefer stability and security over all other factors.

Unlike many other distributions Debian Stable is released every couple of years, in its

past this cycle was pretty irregular ranging from one to three years, however with release of

Debian 6 codename: Squeeze it was announced that Debian Stable will be released within two

year cycle, this will not only enable developers to better plan their application development

and deployment but also enable its users to be able to better plan and prepare for the upgrade

ANDROID SDK INSTALLER 10

procedure. Even though it's not backed by any parent company Debian Stable release is

officially supported and will be receiving security updates (Debian's security policy also states

this) for one year after the next stable release. That means after new stable is released, old

stable becomes “Old Stable” and is still supported for at another year giving it approximately

a support up to 3+ years.

Debian codenames have been named after “Toy Story” movie characters with each of

them changing with each Stable release, while Sid (Unstable) remains to be the same

character and perfectly portrays the state of that distribution as in the movie Sid is the mean

kid that likes to cause havoc and break all the toys.

 There is another experimental distribution within Debian which isn't even officially

supported, Debian CUT (Constantly Usable Testing). This is Debian's version of “Rolling

Release”, concept which has been accepted by couple of new Linux distributions and is being

tested by many others. Author of this paper has published an article “Debian CUT, a new

rolling release?” for those who are interested in one such topic.

It is this abundance of features and options that make Debian a perfect platform for

devices ranging from airplanes, supercomputers, servers, phones to notebooks and makes a

perfect base to make and tailor your own Linux distribution.

Explain difference between Android and Debian

One may say since they are both Linux based platforms/systems theoretically they

could be seen as the same but in reality there are vast differences. For example Debian is

developer by thousands of volunteers while Android is developed by Open Handset Alliance

(which is lead by Google) and Google itself. While Debian supports 11 different computer

architectures, currently Android officially supports only one, ARM. There are projects which

http://www.omgubuntu.co.uk/2011/03/debian-cut-a-new-rolling-release/#_blank
http://www.omgubuntu.co.uk/2011/03/debian-cut-a-new-rolling-release/#_blank
http://www.omgubuntu.co.uk/2011/03/debian-cut-a-new-rolling-release/#_blank

ANDROID SDK INSTALLER 11

are providing x86 support and apparently current Google TV uses x86 architecture, Intel has

also announced they will be entering this market with their new sets of chips as they plan to

introduce x86 architecture for Android based phones. Projects like Android-x86 have released

unofficial ports of Android to x86 architecture for a limited number of devices.

Android doesn't have X Window System which is used to provide support for

graphical user interfaces (GUI) and is used by all Linux distributions that have GUI

capabilities. Another major distinction is that Android doesn't support the full set of GNU

libraries, again something that's used by most modern Linux distributions. Thus generally put,

structurally these two are completely different systems from almost every possible aspect and

one thing they definitely have in common in its verbatim form is Linux kernel.

Android gets merged with Linux kernel main tree

Since its inception, Android, even though Linux in its heart meaning it was based on

Linux main kernel tree was dropped out of it, due to many disagreements between Linux

kernel tree maintainers and Android kernel maintainers. These were mostly based on the facts

that Android was developed at a very fast rate and changes that were made to original Linux

kernel weren't being pushed back, and by some opinions because Google lacked personnel to

address this particular issue. Changes that were made on Android kernel which were pushed

back to Linux main tree weren't updated and were left neglected or were simply completely

abandoned.

Thus for years, even though at its base same operating systems it could be said these

two were developed in separate manner. There were even speculations that Linux Foundation

may sue Google due to Gnu General Public License violation, of course these claims and

rumors were debunked by Linus himself in the fall of 2011 when he stated: “there’s still a lot

ANDROID SDK INSTALLER 12

of merger to be done … eventually Android and Linux would come back to a common kernel,

but it will probably not be for four to five years.”

However just couple of months after this announcement was made at 2011 Kernel

Summit in Prague it was announced that Android kernel tree will be merged into mainline

Linux kernel tree, “Android Mainlining Project” was created with aim to help with the merger

process.

Of course, both systems will greatly benefit from one such merger but aspects I think

could especially benefit from one such merger are Linux distributions. When I say this I'm

strictly referring to Android's “low memory killer” feature which in my opinion is

revolutionary approach to application management. On Android you never quit from

applications as you do on all other operating systems, meaning Android applications never

exit, instead when you switch to other application or process application you previously used

remains saved and stored in memory in an inactive state. Application remain in one such state

until device becomes low on space when a special mechanism decides which application to

kill in order to free up memory without affecting system where same one is not being used.

When I was first greeted with this approach the first thing that crossed my mind is

“image how one such mechanism” would benefit desktop or notebook computers. Of course

it's needless to say how one such approach benefits user experience and with upcoming Linux

3.4 release date behind the corner implementation of one such mechanism into Linux

distributions is becoming a reality.

Android SDK

Android SDK (Software Development Kit) is a extensive set of development tools

which allow you to develop and publish applications for the same platform. Some of these

ANDROID SDK INSTALLER 13

include AVG Manager (android), Android Debug Bridge (adb), Dalvik Debug Monitor

(ddms), Android Emulator (emulator), various libraries along with diverse selection of

tutorials, documentation and sample code. Besides Linux other platforms that are supported

are Mac OS X and Windows.

Also worth mentioning is Android Development Tools (ADT) Eclipse IDE plug-in;

with Eclipse IDE being one of the most popular and used IDE's (Integrated Development

Environment) for Java development. ADT plug-in extends Eclipse IDE capabilities by

allowing developers to quickly create new Android projects, as well as

create/modify/build/debug their applications in Java and XML files rather than rely on using

command line tools to achieve the same purpose. Among many other things it also provides a

graphical layout editor which allows developers to create application UI (user interface) using

a simple drag and drop interface.

ANDROID SDK INSTALLER 14

Chapter 2

State of Android SDK installation procedure on (Debian) Linux

You could say that Android SDK installation procedure isn't done in automatic manner

on any of today’s leading operating systems (Linux, Mac OS X and Windows). However on

Mac OS X and Windows this installation procedure is done in a somewhat user friendlier

environment while Linux lacks one such procedure which is mostly due to the environment

itself rather than the installation procedure of the components itself.

If we are talking about regular or even freshly installed Debian machine, even before

getting to part of installing Android SDK we should install a set of prerequisite software such

as: “openjdk-6-jdk” which is OpenJDK Development Kit and is a open source and free

implementation of Java programming language. This is standard for Java related things on

Debian, even though we could also use Oracle Java JDK package whose official support has

been dropped by Debian even from the “non-free” repositories.

It's also important noting we could also go with “openjdk-7-jdk” package, a latest

major Java 7 update which was released in the end of 2011, but since version 6 is still the

official Java version in Debian we'll be relying on this version. Moving to version 7 could be

planned for some of the future versions. Another mandatory package which is required to

install is “eclipse” which consists of Eclipse IDE, an Extensible Tool Platform and Java IDE.

Also please note that up until this point installation procedure doesn't differ much then on the

other operating systems we've mentioned.

ANDROID SDK INSTALLER 15

 In case user is running a 64 bit architecture system he must install “ia32-libs” a

package which contains runtime libraries for the ia32/i386 architecture configured and ported

for use on 64 bit Debian kernels such amd64 or ia64. Simply put this package allows you to

run 32 bit applications on a 64 bit platform. Another package a 64 bit user should install is

“lib32stdc++6” which contains additional GNU Standard runtime library for C++ programs

that were built with GNU compiler (GCC).

Optional list of additional applications that could be installed are:

 git - popular version control system designed to handle very large projects and

efficiency (fast, scalable, distributed revision control system)

 ant - Java based build tool like make

 libxml2 - GNOME XML library

 libxml2-dev - Development files for the GNOME XML library

 Next step would be to download Android SDK package from official Google Android

Developers website and unzip it, once uncompressed Android SDK will provide us with a

new “android-sdk-linux” directory, hypothetically speaking if this directory is located in our

$HOME directory; on Linux /home directory is place where every user keeps its own private

data, and every user gets its own space under /home directory depending on their username.

So let’s say our user “John Doe” has username which is “johndoe”, under Linux

filesystem $HOME directory for user “johndoe” will point to /home/johndoe. $HOME is a

symbolic link to current user’s home directory. In order for “johndoe” to run “android”

command instead of having to specify full path to where that application resides we'll have to

add $HOME/android-sdk-linux/tools and $HOME/android-sdk-linux/platforms directories to

our PATH

ANDROID SDK INSTALLER 16

 PATH is environmental variable that tells shell which directories to search for

executable files in response to commands issued by a user.

 .profile can contain a series of commands or settings that bash allows you to executes

automatically once the user logs in. We added this to /etc/profile.d/ which is system

wide profile for Bourne compatible shells including bash.

Besides user having to know the location of all the files he needs to edit, and have a

general knowledge of tools he needs to use. To demonstrate how exhausting this whole

process was before “android-sdk-linux” we'll demonstrate how this procedure was done

manually:

 We will simply add this with our favorite text editor, in this case I'll use “vim”

vim .profile

 add following to the end of the file:

android sdk

PATH=”$HOME/android-sdk-linux/tools:$HOME/android-sdk-

linux/platform-tools:$PATH”

 First line is a comment which tells me what the line after it does, while the second line

adds executable files from following directories to be run in shell without providing its

full location.

 To make changes effective without logging out and logging in run:

export PATH="$HOME/android-sdk-linux/tools:$HOME/android-

sdk-linux/platform-tools:$PATH"

ANDROID SDK INSTALLER 17

 This will allow us to run “android” (Android SDK and AVD Manager) (which is

located in $HOME/android-sdk-linux/tools/android from shell directly instead of having to

specify its full location in order to run it.

Next step is the standard installation procedure as we can see it on Windows and Mac

OS X, where it consists of selecting “Available packages” and “Android Repository” which

provides you with packages of different Android API and Platform Tools revisions. Once the

desired package/s is/are selected it's enough to mark “Accept” followed with “Install”.

It is highly recommended to install “Android SDK Tools” and “Android SDK

Platform-tools” and at least one API level, with Android 2.1 being used on 97% of Android

devices.

Figure 2: Result of running "android" command in terminal before and after adding PATH

ANDROID SDK INSTALLER 18

 Upon successful installation if ADB (Android Debug Bridge) requires to be restarted,

answer affirmatively. This step completes the Android SDK installation.

Eclipse ADT plug-in installation

 In order to install eclipse ADT plug-in, it's first required to run Eclipse after which you

go to “Help” > “Install New Software”

 On next window “Available Software” click the “Add” button and add

following:

 Name: ADT Plug-in

Location: https://dl-ssl.google.com/android/eclipse/

 Now back in “Available Software” window you should see “Developer Tools”, select

it and proceed to next screen by clicking the “Next” button.

 In next window you'll see details in which Android DDMS, Android Development

Tools, Android Hierarchy Viewer, Android Traceview will be installed, proceed by

clicking the “Next” button.

Figure 3: Android platform version distribution according to Android

Developers

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

ANDROID SDK INSTALLER 19

 On Next screen in order to proceed you'll need to accept the license agreement.

 Next screen will lead you through packages installation and integration into Eclipse.

 Upon message about unsigned content (Google certificate) it's necessary to accept it

and click on “Ok” button in order to proceed.

 Upon successful installation Eclipse Software Update dialog will encourage you to

restart Eclipse in order to apply changes, restart in our case is required. Click “Yes” to

restart.

 Eclipse ADT plug-in is now installed and integrated into Eclipse, however after

Eclipse has been installed you'll be greeted with this dialog:

Figure 4: Screen we get after successful ADT plug-in installation

 This is a fairly new additional to ADT plug-in after it has been installed, in past you

had to manually select SDK location which means you'd have to install SDK itself

ANDROID SDK INSTALLER 20

first. Now you're able to select option to “Install new SDK” or select to “Use existing

SDKs” which is step we'll use in our case since we already had our Android SDK

installed and set up.

 After locating where your “android-sdk-linux” is located click the “Next” button.

 After this step, your Eclipse ADT Plug-in is successfully installed and setup, at which

point you're ready to start developing your Android applications. This “tutorial” portrays what

Android SDK installation procedure seems like on Debian and generally any other modern

Linux distribution. Following a “tutorial” like this one may not be a problem for some, but is

Figure 5: New features inside of Eclipse as result of successful ADT install

ANDROID SDK INSTALLER 21

it really necessary in order to be ready to start developing Android applications on your

favorite Linux distribution?

Even besides all of this, this “tutorial” only covered installation of Android SDK and

ADT Plug-in without installing full support for your mobile device, nor adding support for

MTP which is also part of the “android-sdk-installer” application.

Explain how this process differs on Windows, Mac OS X and Linux

Even thought Windows and Mac OS X may seem as more friendly operating systems,

installation of Android SDK along with Eclipse ADT plug-in doesn't differ so much from one

on Linux, especially if we compare it to Mac OS X which is based on Darwin a project based

on BSD, thus with both of them having common UNIX roots.

On Windows this procedure can be divided into surprisingly similar steps that we can see

on Linux:

 Getting Android SDK package

 Extracting it and setting environment variable PATH to the location of SDK

 Setting it a environment variable PATH will do almost the same thing we see on

Linux, where when command “android” or “emulator” is run in Windows Command

Prompt will launch Android SDK Manager, or an Android Emulator.

 Installing JDK (Java Development Kit)

 Since JRE (Java Runtime Environment) won't be enough it'll be required to install

JDK (Java Development Kit) which includes JRE.

 Install Eclipse

 Once JDK/JRE has been installed user will be able to install and run Eclipse

 Eclipse ADT Plug-in

ANDROID SDK INSTALLER 22

This step is identical to one we saw on Linux

 While we may say Windows and Linux Android SDK installation procedure is

different, installation on Mac OS X is almost identical to one on Linux. Coming from the

same Unix roots, updating PATH environment variable will be done in same manner it's done

on Linux, by updating ~/.bash_profile with default PATH variable.

 Eclipse and Java is obtained from their respected sites and installed in similar manner,

while Eclipse ADT Plug-in is installed just as it's installed on any of these platforms.

 Installing device support and getting it recognized by the system

 Windows always had problems with device drivers, however luckily for Windows

users drivers were usually issued by manufacturers and are installed in semi-automatic mode.

Android devices should be automatically detected by the system, in case they are not even

with the help with drivers from Android SDK you can always rely on Google USB Driver or

in form of an OEM USB Drivers

 Mac OS X users/developers can skip this part as their drivers are being automatically

installed. Automatic device recognition is usually the case on Linux as well, and Linux user

can usually skip this part as well, but in order to add full support for specific devices “udev”

(Linux kernel device manager) rules need to be manually specified in order for device to be

fully recognized.

 In these rules each device manufacturer is identified by a unique vendor ID, as

specified ATTR{idVendor} property.

 Example of one such rule for: Google Nexus S phone looks like:

SUBSYSTEM==”usb”, ATTR{idVendor}==”18d1”, MODE=”0666”,

OWNER=”plugdev”

http://developer.android.com/sdk/win-usb.html#_blank
http://developer.android.com/sdk/oem-usb.html#_blank

ANDROID SDK INSTALLER 23

 MODE in this case represents a read/write permissions the same way they are used in

“chmod” (Unix command which tells users how much access they have to certain file)

fashion.

 OWNER represents a group to which a user has access to, or is part of. Interesting

peculiarity regarding this is that many distributions (Red Hat based) have “usb” group

while Debian derived distributions refer to that group as “plugdev”.

 One can see to which groups he belongs by running “id” command in the terminal.

 These rules are usually written in a filename called “51-android.rules” and placed in

/etc/udev/rules.d/

 They are given both read permissions for all users, groups and others (chmod a+r)

 Part of “android-sdk-installer” application is to have function for user to automatically

add these set of rules without user having to bother with any of it, instead of him having to

manually edit udev rules, having to know his device USB vendor ID, or what each group is

used for and so on.

 However, after all of this has been said, even though Linux might have scored a lot of

points in “complicated” category, it has one great benefit over its competitors which is its

software repositories. Unlike Mac OS X or Windows where you have to get all the

components “manually” from Eclipse to JDK in separate locations, from even separate

mediums a big advantage of Linux ahead of these systems are its software repositories where

all of this software can be downloaded and installed in click of a mouse.

 Once “android-sdk-installer” is fully completed application it'll finds its place in these

repositories and will be able to install all the needed components from a single place with

single click of a mouse.

ANDROID SDK INSTALLER 24

How the idea of an “android-sdk-installer” was born?

A perfect example could be Google's recent migration from USB mass storage

protocol to the MTP (Media Transfer Protocol) with latest Android version 4.0 “Ice Cream

Sandwich”. I was reading one of my colleagues article on “[How to] Connect your Android

Ice Cream Sandwich Phone to Ubuntu for File Access” and I was mesmerized, not because of

the quality of his article but rather because I previously did the same thing in order to get

MTP enabled on my system and this article gave me ability to read and see the whole

situation from another angle and in all honesty to see how complicated this whole process

was.

 However, this just came in as another piece of the puzzle as idea of having an

“Android SDK” installer was present in my mind for some time, idea of having Android SDK

along with Eclipse ADT Plug-in seamlessly integrated into Debian Linux. Peculiarities like

this one, only extended my idea of this “installer” giving it extra features such as “add

hardware device support for Android devices” and ability to “add MTP support (enables USB

mass storage support on >= Android 4.0 ICS)”.

 From a technical point of view, it was only extending current installer possibilities and

adding couple of additional packages. Of course I'll explain process of my plans of integrating

every component later on in chapters dedicated to that purpose. But generally speaking even

though this idea was in my mind for a long time, this was probably the event that „sparked“ it

the most and after which all the “pieces of puzzle” came in together.

http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/#_blank
http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/#_blank
http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/#_blank
http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/#_blank

ANDROID SDK INSTALLER 25

What kind of advantage does this bring to Linux?

This will give an almost incomparable advantage to Linux ahead of its competitors

Windows and Mac OS X, in “Explain how this process differs on Windows, Mac OS X and

Linux” we saw that when it comes to complexity of this task Linux is not that much behind its

competitors, from a given aspect and point of view it could even be in an advantage from a

very start.

 But advantage Linux has and which can be measured with its competitors is its

platform architecture and with certain degree of knowledge put all these components together

and make another application out of it which automatically takes care it all, from a

user/developer all is required to do is give their input on few very simple prompts.

 After release of one such installer, which I'm planning to release under one of the

Open Source licenses will encourage developers coming for other platforms to come up with

versions of same installer for Mac OS X and Windows, as frankly speaking with code as well

as the documentation available for some of the prospective developers changes that need to be

made in order to make it work on their platform are minimal.

 In general I think one such installer will give Linux great advantage over other

platforms when it comes to Android developers installing a simple package and straight after

that being able to developer for their favorite platform without having to get their “hands

dirty” or losing any of the valuable time in the process. Even if tomorrow the same package

was delivered for other platforms, Linux's advantage over all of them would be that this

package would be available online on one of its software repositories. In the end it would

allow it to break all the “myths” of it being complicated and strictly developer/hacker oriented

system.

ANDROID SDK INSTALLER 26

Application Design and components function

Android is the biggest and fastest growing mobile operating system based on Linux,

but even besides this fact support for devices running it as well as the development on this

platform (Linux) is far from ideal. It's important to note that Linux is fully and officially

supported, with Google and Open Handset Alliance providing all the necessary tools and

necessary documentation.

 However there's a gap in this whole process, gap which constrains users or/and

developers to complete the installation process in a error free and semi-automated manner by

selecting which component they would like to have installed and fully working with a single

hit of a button.

Goal of this project is implementation of an installer which will install/setup selected

components in semi-automated manner. Installer consists of few parts which are:

 Implementation and integration of Android SDK (Software Development Kit)

 Ability to install hardware device support for all Android devices

 Installation of ADT (Android Developers Tool) plug-in for Eclipse IDE

 Adding support for MTP (Media Transfer Protocol)

1. SDK – Android SDK (Software Development Kit) installer

 Function of this component is to install Android SDK by making it available for all

users on the system, besides bare installation, its function is also to configure and sets the path

for the users so user can get Android SDK with a single affirmative answer given to the

installer. This will allow users to run applications such as “android” (Android SDK

ANDROID SDK INSTALLER 27

Manager), “emulator” (Android mobile device Emulator), “adb” (Android Debug Bridge) and

rest of the tools and applications that are included with Android SDK package.

2. ADT – Installs ADT (Android Developers Tools) plug-in for Eclipse IDE

 Even with having SDK installed, what gives the Android developer the real power and

ability to develop, build and deliver Android applications within an integrated environment is

ADT (Android Developers Tools) plug-in for Eclipse IDE. This component is supposed to

install the plug-in the shorter way, without user having to go through all the steps manually,

what user sees is a single question while the installer should do the rest of the process without

bothering user while doing it. As with SDK, plug-in will be configured and ready to use along

with path link set to Android SDK location, ready to use out of box.

3. Driver – adds support/install drivers for certain mobile devices

 In one of the earlier chapters it was mentioned how for Linux and Mac OS X since

they come from same background (Unix), installation of drivers is usually unnecessary step as

they are automatically recognized and installed. Hardware device support for devices and

manufacturers is implemented into the Kernel itself and thus they are automatically

recognized. However, with so many different Android devices and manufacturers this isn't

quite the case, and “udev” (Linux device manager) rules need to be adjusted in order for

everything to function properly.

 For Google devices one such rule would look like:

SUBSYSTEM==”usb”, ATTR{idVendor}==”18d1”, MODE=”0666”,

OWNER=”plugdev”

 while for Samsung devices same rule would be:

SUBSYSTEM==”usb”, ATTR{idVendor}==”04e8”, MODE=”0666”,

ANDROID SDK INSTALLER 28

OWNER=”plugdev”

 Sony Ericsson:

SUBSYSTEM==”usb”, ATTR{idVendor}==”0fce”, MODE=”0666”,

OWNER=”plugdev”

and et cetera, what this component does is eliminates users need to fiddle and create udev

rules, along with specific information that is required by his devices manufacturer, not to

mention that every single of these attributes means something else and could possibly harm

your system if not handled properly. That's why this installer allows the user to install support

for his device by simply affirmatively answering the questions.

4. MTP – Adds MTP support

As mentioned it was shown and explained how difficult one such seemingly simple

step can turn out to be, selection to install this component will take care of everything for the

user automatically. Up until latest Android version Android v4.0 “Ice Cream Sandwich” your

Android phone was connected to your computer using USB Mass Storage (UMS) so once

connected your device would appear on your system just as your USB flash drive would

appear.

 This seemed to work on Linux and Windows without any problems or any additional

installations, while on Mac you would use a “Android File Transfer”, however with latest

Android version and their latest device Galaxy Nexus, Google decided to leave USB Mass

Storage (UMS) over Media Transfer Protocol (MTP).

Google stated they are leaving UMS over MTP because up until Galaxy Nexus every

Android device had two partitions, internal one where system files and installed applications

http://www.android.com/filetransfer/)#_blank

ANDROID SDK INSTALLER 29

were stored and another partition which would server for your private data, such as photos,

music, videos and other media. This second partition was usually used as USB mass storage

device it was done this way because USB mass storage protocol is a block-level protocol,

meaning that partition couldn't be mounted on two different systems at the same time. Simply

said, in order to have one partition mounted on your computer you would have to unmount it

from your phone first.

The problem with UMS was that your “internal storage” would fill up, while your

“external” storage would have gigabytes of free space for storage of that same data, that's why

in more recent versions of Android you had an option where you could move and/or store

application data on your “external” storage.

What MTP offers is ability to have everything stored on a single partition, for

example: partition wouldn't have to be unmounted from phone in order to be mounted on your

computer meaning that most of the applications would be left in operational state while you're

transferring your private media or other types of data.

On a long run this makes things much less complicated, user doesn't have to care about

size of his internal or external partition as it's all getting sorted under one partition. Another

“side affect” of this move is that Android can now use EXT file system (which is also a

default filesystem for most Linux distributions) instead of having to rely on FAT32 as a

filesystem for the partition that was used as “USB massive storage”. Besides Galaxy Nexus,

it's most likely that most manufacturers will adapt to this model as they adapt to the latest

Android version.

Since Windows Vista MTP support is built in into the system, while Windows XP

users need to install Windows Media Player 10 and higher in order to get support for MTP.

Linux and Mac have software packages which provide these systems with MTP support.

ANDROID SDK INSTALLER 30

However, to have MTP support installed on Linux, even thought there are software

packages that provide it with MTP support, whole process is much more than just installing

packages and it also involves editing udev rules and configuring fuse (Filesystem in

Userspace). Having this component will simplify this tiresome process into a single hit of a

key.

Define: “android-sdk-installer”

Even with full support from Google for Android SDK and its great documentation,

installation of SDK isn't completed in a error free nor automated manner. It's done through a

“step by step” process with users/developers usually relying on various tutorials in order to

achieve this goal. For thousands of new Linux users who are Android developers, meddling

with Linux terminal and its internals on their first day in order to have their Android SDK

working. Even for more experienced users this process doesn't sound too inviting, and this

installer comes in to address those issues in most simple and automated manner.

“android-sdk-installer” is imagined as a utility which allows user to install and

configure Android SDK, Eclipse ADT Plug-in, add hardware device support for the Android

based devices as well as having features such as “install MTP support”, put in most simple

jargon this is an application which allows you to install all the needed components in most

simple manner so one can approach to development of Android applications within minutes.

Painful state of the installation procedure was perfectly portrayed in the beginning of

the chapter in “State of Android SDK installation procedure on (Debian) Linux” and “Eclipse

ADT plug-in installation” and please be aware that even though this is the very first version

of “android-sdk-linux” all of the mentioned issues and the wanted components are

implemented and working.

ANDROID SDK INSTALLER 31

Please note, in following part I'll explain how certain issues and components were

handled and will be solely referring to Appendix: android-sdk-installer. This installer is

imagined to have a “waterfall” flow in which it checks the system state and/or presents the

state of required tools and based on those parameters asks the user for his input in case action

is required. At the same time all the steps are offered option to “Skip” to the next component

as in case of running the installer again in order to reconfigure some of the components which

weren't previously configured.

First part of the code is installer’s description, its copyright and license (Appendix:

Lines 3-20). This is very important as this installer was written in bash which is available on

all modern Linux distributions, tomorrow once it's publically published due to its license

(GPL) developers from other Linux distributions will be able to use this code and tailor this

installer to their own distributions needs which means it won't be solely restricted to Debian

and its derivates but it will rather be available for all the distributions out there.

[Appendix: Lines 28-43] check if the user has “root” privileges otherwise the installer

procedure cannot continue, this is due to the fact that almost every single one of these

components and/or issues requires root privileges in order to address their resolution thus the

reason installer won't be able to continue without same set or privileges. Sometime in future

I'm planning to implement support for users with “regular” set of permissions to use the

applications components which don’t' require root privileges.

Figure 6: refernece to Appendix: Lines 28-43

ANDROID SDK INSTALLER 32

[Appendix: line 45-91] addresses the issue of 64 bit architecture and dependencies it

requires, this part requires more work which will be seen in future versions.

[Appendix: line 93-226] deals with process of doing any pre-cleaning if necessary and

setting up the necessary environment that's required for our installer. In this stage, if any of

the files which installer will use are found in the same directory (during component

download) that component will automatically make a copy of the same file thus leading to

errors. This is also planned to be addressed in one of the future versions of the installer, where

in case one of the components are found in that same directory, installer will be able to use it.

[Appendix: Lines 228-268] in case /opt/android-sdk-linux directory already exist,

installer will offer to make a copy of that directory as it will also ask for permissions to use

that directory and overwrite it with new installation data. In case this directory doesn't exist

installer will create it and give it right set of permissions for all system users to use.

[Appendix: Lines 272-315] in this step installer detects whether the directory where

Android SDK Tools are stored is empty, if this is the case all of the system would be left

without the “core” Android SDK tools such as android (Android SDK and AVD Manager),

emulator (Android Emulator), ddms (Dalvik Debug Monitor) and et cetera. In case it is

empty, installer will offer to download “Android SDK Starter Package” which contains all of

the mentioned tools and install them.

ANDROID SDK INSTALLER 33

Figure 7: reference to Appendix: Lines 272-315

Figure 8: “Android Starter Package” installation procedure

ANDROID SDK INSTALLER 34

[Appendix: lines 318-380] in this step, installer offers to install latest Android SDK

API Platform which supports all the latest features and to install Android API 2.1 which is

supported on 97% phones and tablets. It's also important to note once the installer is finished,

in case none of these platforms was installed “android” (Android SDK and AVD Manager)

allows the user to install the mentioned API's as well as all the other API's to this date. In case

they were installed they will be recognized to be in such state.

Figure 9: Installer offers to install the latest available Android API

Figure 10: Installer offers to install Android 2.1 API

[Appendix: lines 384-472] installer offers to install and configure PATH

environmental variable which allows all the system users to run tools such as android,

emulator, ddms and et cetera directly from their terminal . In one of the previous parts in

ANDROID SDK INSTALLER 35

which installation state was compared to Windows and Mac OS X we'll clearly see what kind

of advantage this gives even ahead of Windows in which this step has to be performed

manually.

Figure 11: Installer offers to configure the PATH environmental variable

[Appendix: lines 474-533] installer handles the installation of Android ADT plug-in

and Eclipse in case it hasn't been installed. However this components has the number 1

priority when it comes to installer future releases, where it is planned for this component to be

installed in a form of a Eclipse plug-in rather than installing it by “brute force” which was the

standard of plug-in installation up until Eclipse 3.3. However with Eclipse 3.8 release around

the corner it is necessary to tailor this component to its present standards.

Figure 12: Start of ADT Plug-in installation procedure

ANDROID SDK INSTALLER 36

Figure 13: ADT Plug-in installation

[Appendix: Lines 535-722] in these 187 lines installer offers to install hardware device

support for all the Android devices. It also covers many scenarios in which it also recognizes

if such rules already exists, in final case it will add hardware support for all the devices in

accordance to Google's latest “hardware devices list”.

Figure 14: reference to Appendix: Lines 535-722

ANDROID SDK INSTALLER 37

[Appendix: Lines 724-782] installer adds Add MTP support which enables USB mass

storage support on Android 4.0 and later, this component has number 2 priority position on

future installer releases as at the time of writing this installer and paper I was not in

possession of one such device (Google Galaxy Nexus) to test it out properly.

Figure 15: reference to Appendix: Lines 724-782

[Appendix: 784-914] as in the beginning of this process, installer will offer to clean up

and remove any of the unnecessary files. Since files were created while using root

permissions, even if user decides to skip installer will leave these files with right set of

permissions for ordinary user to deal later on.

Figure 16: Reference to cleaning up process

ANDROID SDK INSTALLER 38

[Appendix: Lines 918:921] installer prints out the final message and how the user can

start the installer in case he needs to (re)configure something.

Figure 17: Installer goodbye message

This part briefly explained some of the installer through its code, in future besides the

number of planned features and options one of the bigger options that's planned is for the

installer to get GUI support and be available in GUI.

Figure 18: Android SDK Manager running after successful instalation

ANDROID SDK INSTALLER 39

Chapter 3

Which programming languages were used in creation of this application?

 For installer script itself main programming/scripting language that was used is Bash

(Unix command shell), while other components should mostly consist of Java and possibly

some C++ and XML.

 Whole application should be written as a mixture of Bash and features provided by

APT. Application itself will be written in a single “android-sdk-linux” Bash script file which

will included in part of “android-sdk-linux” Debian package. The script itself will have all

instructions on how to operate once one of the components above has been selected, of course

with help of files inside of debian/ directory manipulation of what needs to be done in

combination with the script will be complete. For example, even though we can set

dependencies in control file, these will also be set in script itself and will communicate with

files within debian/ in order to make the package.

How was this platform chosen from technical stand point?

 Besides Debian being one of the oldest and most influential distributions, another

quality which makes Debian a top choice is its Advanced Packaging Tool (APT), which some

refer to as one of its biggest and best features due to its speed, dependency control and of

course its strict quality control in order to satisfy “Debian's Policy”.

There are many package management tools for various Linux distributions such and

each one of them has its own advantages and disadvantages.

ANDROID SDK INSTALLER 40

The most popular and most widely used ones are APT - (Advanced Packaging Tool

[.deb]) and RPM (RPM Package Manager [.rpm]) mostly due to its quality and long history,

and as well due to the most Linux distributions being based on those same packaging

managers as well as being a derivatives of Debian and Red Hat and them being one of the

oldest distributions.

That's why you can see APT being used in most popular distributions today such as

Debian, Ubuntu and all its variants and Mint Linux while you can see RPM being used in

distributions such as Red Hat, Fedora, CentOS, OpenSuse and Mageia (ex Mandriva, ex

Mandrake).

RPM started out as a “Red Hat Package Manager” while today it's referred to as “RPM

Package Manager”, however even due to its pedigree most of the time RPM is referred to as

being notably slow compared to its competition, and its past was most notoriously known for

a term called “RPM dependency hell” which resulted in included software packages version

mismatching their dependency on specific version of other software packages. This problem

was most active and can relate to early 2000's while today this problem has mainly been

sorted out and dependencies are automatically sorted and fixed.

Contrary to RPM problem, our third oldest distribution of today, Slackware never had

any “dependency hell” problems, mostly because its package manager (slackpkg) doesn't

resolve dependencies between packages. Slackpg will install the desired package (.tgz) and

won't check for any software dependencies which usually resulted in application not being

able to start forcing you to backtrack which library/ies was/were missing during its launch, in

other words everything had to be done manually. Even getting the package itself, unlike APT

and RPM you couldn't/can't get package from online repositories rather you have to get it

from official sources (Slackware package website). Today there are package managers such as

ANDROID SDK INSTALLER 41

slapt-get which take care of the repository and dependency problems, but are labeled as third

party and are not officially supported.

Package managers of newer generations worth mentioning are Gentoo Linux

“portage” and Arch Linux “pacman”.

Portage's main and most distinctive feature is that once you selected a certain package

to install, it will compile that software package from source before installing it, one such

mechanism allows it very precise dependency tracking but the toll is taking is time that is

required for a certain software package to be compiled from source, especially for some

packages such as GNOME or LibreOffice which result in compilation time which is measured

in days. However, die hard Gentoo fans will argue that their packages and their system runs

faster than the pre-compiled package archives and package software we install on rest of the

distributions, even though by some benchmarks this claim don't turn out as true.

Arch Linux “pacman” is capable of resolving dependencies and synchronizing

package list and even automatically downloading and upgrading (all) packages by running a

single command, but what makes it unique is structure of its packages which are compressed

into tar archive containing metadata along with its files. Packages are exclusively built using

Bash build scripts.

However with all of this said, APT seems to be a package manager with most features,

option and with its dependency solving characteristics a truly most reliable and trustworthy

solution. It's also worth noting that APT is even capable of handling RPM packages with

tools such as “Alien” which allows converting and installing .rpm packages, it can even do the

same for Slackware (.tgz) format files.

ANDROID SDK INSTALLER 42

Tools like “apt-rpm-repository” even provide a feature of porting Debian APT to RPM

package formats and creating an APT RPM repository all so RPM based system can be

maintained using APT while the repository (APT) itself resides on Debian system.

Even Gentoo diehard fans can be silenced with tool such as “apt-gentoo” which makes

Debian fully compatible with these new source-based distributions. With this tool packages

can be installed in same way they are installed on Gentoo, where packages are downloaded,

their build logs are read and then building process is simulated on their local machine.

Besides numerous features and options APT provides seamless dependency resolution

through checking and syncing with online repositories, it does this by relying on

/etc/apt/source.list where online software repositories are defined. APT pinning allows user to

download and install packages from other distributions again with seamless dependency

resolution, for example: testing user wants to install package which is available in

experimental repository, this can simply be done by issuing:

apt-get -t experimental install package-name

There are many other APT features which won't be mentioned due to the scope of this paper.

Standard application installation procedure on Linux

Usual way of installing an application on your Linux system without help of package

manager is a process which is also known as “compiling and installing from source”. Please

note that this procedure can greatly vary from application to its type and numerous other

factors, first step is to download the program (usually in compressed format) extract it and

into the newly created directory. It also may be worth mentioning that besides Linux this

ANDROID SDK INSTALLER 43

process is same on any Unix blend, tools involved in this process is GNU Build System also

known as Autotools.

It is then necessary to invoke ./configure, this script checks your system libraries and

sorts out dependencies that are required in order to build your application. Depending on the

application and way that application relates to certain library, but this script will usually either

show which dependencies are not satisfied and will continue with the process in case these

dependencies aren't mandatory, in case they are your application installation process will stop.

Main purpose and job of ./configure script is to build and create a “Makefile” which is

necessary file during the installation process as it checks and test configure script to see if all

necessary steps and tasks are taken and satisfied in order to compile the software itself.

Upon successful completion make is run which automatically builds and compiles all

programs code along with its libraries from source code and creates the executable, at this

step utility usually doesn't complain about missing dependencies and if there is a sequence it

can't go through it'll just break the whole compilation process. Upon successful completion

you're ready to install the newly generated executable file/s.

make install is last step which is usually required to be run by a root user. In this step

executable files (which were made in make process) are put in developer pre-defined

directories in order for them to be successfully executed, this involved make script finding

install within Makefile. This “final destination” directory is usually a /usr/bin so the

application is allowed to be run by all users on system, but as previously noted this process

can greatly vary by application that is being installed.

This installation procedure can greatly vary on different build systems as well

applications written in different programming languages, and usually result in many errors

and other sort of problems depending from platform to platform. Thus I believe this process

ANDROID SDK INSTALLER 44

perfectly portrays a job Linux package management system does and to what degree it

simplifies and makes installation/removal/upgrade procedure easier and more convenient.

Application creation and installation in Debian

Usual way of application packaging procedure in Debian consists of getting the right

set of development scripts, which can all be found in package named “devscripts”. Step that

usually follows is getting source of upstream program usually found in compressed (tar)

format, creating an appropriate environment for the package creation after which dh_make is

run which prepares original source archive for Debian packaging.

After running “dh_make” directory “debian/” will be as created in which we'll find

many files, rest and all of Debian packaging process will take place within this directory.

Most important files and files that are required in order for package to be built are:

control - meta data about package such as its description, architecture it supports,

package dependencies, package author and et cetera.

changelog - packages changes history, also worth mentioning is when package is first

created, it's specified to which distribution repository its targeting. Also if bug number or

(ITP) is labeled that bug is marked for closing. As once uploaded labeled bugs will be

automatically marked as fixed in Debian bug tracking system.

rules - this file is what actually creates the package and could be labeled as another

“Makefile”. Data inside of this file defines how the package will be made, also out of all files

in debian/ this is the only one that's marked as executive.

copyright - file contains copyright and license information for the particular

(upstream) package.

ANDROID SDK INSTALLER 45

Besides these, there are many (optional) files which will be used in case of “android-

sdk-installer” package whose function will be described later on. Once we're done setting up

files inside of debian/ we're ready to built and test our package. This can be done many ways,

with the simplest one being:

dpkg-buildpackage -us –uc

dpkg-buildpackage command itself builds the package, while arguments “-us” and “-

uc” mean do not sign the source package nor the .changes file respectably. While this

description itself might bring a lot of ambiguity on what each thing is (.changes or what does

signing even mean?) this will be explained more in next chapter where implementation of

package is described in more detail.

During this package building process, package goes through pretty much the same

instruction set we saw in “Standard installation procedure” + it models it to fit Debian APT

set. If there are problems during compilation you yourself will need to install the necessary

build dependencies and libraries for that package, however upon success built final result is

“package_name.deb”.

This package can be installed locally using “dpkg” (dpkg -i package_name.deb) tool

which is standard Debian package manager, or using graphical installers such as “gdebi” by

clicking on the .deb file name. Upon installation package will suggest required and optional

(suggested) dependencies, these are installed by simply affirmatively answering on that

prompt.

Please note that procedure explained above is most basic and simplest way to explain

Debian package creation, there are numerous way to create package using different tools such

as “debuild” or “git-buildpackage” and et cetera. “android-sdk-installer” will have much

ANDROID SDK INSTALLER 46

different and complicated structure then displayed here, which will be seen and available in

written form upon its final code release

Application implementation into Debian repository sources

In order to upload your package to one of Debian distribution software repositories

you have to satisfy some of the Debian policy requests. First of all you as a future maintainer

or perhaps even a developer you must generate and take care of your PGP key, you'll use this

key in order to sign your package and/or the changes you made to current package. Since all

of the work in and on Debian is done remotely, PGP key is used as form of identification and

trust among developers. “Key signing” events are usually held at conferences such as

DebConf where developers can exchange their key numbers and with proper form of

identification sign them.

Of course, after your package has been made and is even working perfectly, that

doesn't mean that it complies with Debian's strict policy requirements, thus after creation

before it's uploaded package needs to pass all “lintian” errors and even warnings. “lintian” is

a very powerful package analysis tool which is used for this purpose after package creation.

For example you can even run package creation, lintian checkup and do its signing with tools

such as “debuild” which do this by default.

After your package is created and working properly, has passed “lintian” tests and is

signed with your PGP key it's a valid candidate to enter Debian software repositories. Until

you get a status of a Debian Developer, you'll most likely want to submit your package using

“Debian Mentors” website. This website allows you to upload your packages to Debian

distribution software repositories, with additional help from current Debian developers which

ANDROID SDK INSTALLER 47

will guide you through the process or will suggest how to do some of the things you did in

your package in a different manner.

ANDROID SDK INSTALLER 48

Conclusion

In this paper we're greeted with extensive overview of an Android, its SDK, its tools and its

state in today's three most popular and used operating systems. Reader is also introduced to

what Debian Linux is, and its development model and making a distinction between these two

at first similar or even same systems, of course meaning they are both purely Linux based

platforms. Yet, due to their licensing model and freedom it allows this could give a great

glimpse what you're able to do with these systems if you have right vision, and of course due

to its open model how simple it is to achieve this goal.

Of course, idea of “android-sdk-installer” is introduced, and it can perfectly be used to

portray the idea that was emphasized in previous paragraphs. It is with power behind the open

source idea and community that one such application can even gain advantage over operating

systems that are annually fueled with billions of dollars of revenue. However, let that idea not

stray you from the original topic this paper introduces which is how to create one such

application within Debian Linux, why and how to target which Linux distribution you want

your application to work on and to explain whole process of doing so.

In final conclusion this paper should provide the reader with many aspects, from

market analysis to problem realization. Through proposition of its solution to detailed creation

of the application and its implementation, this in its final form should give a perfect example

on how entire community and technology world can benefit from one such idea. On broader

scale this topic doesn't just limit on Linux but rather how one such tool with empowered by

GPL 2+ license can even provide other operating systems with opportunity to implement

same solutions in order to fix its flaws. In general result of this paper besides showing the way

from creation of an idea to its implementation, now only how (Debian) Linux can also benefit

ANDROID SDK INSTALLER 49

even its competitors using Open model and improving technology as a field in general, rather

than just a strictly targeted platform.

ANDROID SDK INSTALLER 50

List of References

Carl Albing. JP Vossen, Cameron Newham. (2007). Bash Cookbook. Sebastol, California:

O’Reilly Media

Mendel Coope. (2011). Advanced Bash-Scripting Guide. Retrieved from:

http://tldp.org/LDP/abs/abs-guide.pdf

Steve Parker. (2011). Shell Scripting. Hoboken, New Jersey: Wiley/Wrox

Josip Rodin, Osamu Aoki. (2012). Debian New Maintainers' Guide. Retrieved from:

http://www.debian.org/doc/manuals/maint-guide/maint-guide.en.pdf

Developer's Reference Team, Andreas Barth, Adam Di Carlo, Raphaël Hertzog, Lucas

Nussbaum, Christian Schwarz, Ian Jackson. Debian Developer's Reference. Retrieved

from: http://www.debian.org/doc/manuals/developers-reference/developers-

reference.en.pdf

Martin F. Krafft. (2010). The Debian System, 2nd Edition. Münich, Germany: O'Reilly

Media.

Michael Kerrisk. (2010). The Linux Programming Interface. San Francisco, California: No

Starch Press.

Zigurd Mednieks, Laird Dornin, G. Blake Meike, Masumi Nakamura. (2012). Programming

Android, 2nd edition. Sebastopol, California: O'Reilly Media

http://tldp.org/LDP/abs/abs-guide.pdf
http://www.debian.org/doc/manuals/maint-guide/maint-guide.en.pdf
http://www.debian.org/doc/manuals/developers-reference/developers-reference.en.pdf
http://www.debian.org/doc/manuals/developers-reference/developers-reference.en.pdf

ANDROID SDK INSTALLER 51

Google Inc. (2012). Android Developers. Retrieved from:

http://developer.android.com/index.html

IBM Corporation and others. (2005). Welcome to Eclipse. Retrieved from:

http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-

200506271435/org.eclipse.platform.doc.isv.3.1.pdf.zip

Lars Vogel. (2011). Eclipse Plugin Development - Tutorial for Eclipse 3.4. Retrieved from:

http://www.vogella.de/articles/EclipsePlugIn/article.html

Jonathan Corbet. (2011). Bringing Android closer to the mainline. Retrieved from:

https://lwn.net/Articles/472984/

Bilal Akhtar. (2011). [How to] Connect your Android Ice Cream Sandwich Phone to Ubuntu

for File Access. Retrieved from: http://www.omgubuntu.co.uk/2011/12/how-to-

connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/

Wikipedia. (2012). Debian. Retrieved from: http://en.wikipedia.org/wiki/Debian

Wikipedia. (2012. Android (operating system). Retrieved from:

http://en.wikipedia.org/wiki/Android_os

Steven J. Vaughan-Nichols. (2012). Android and Linux re-merge into one operating system.

Retrieved from: http://www.zdnet.com/blog/open-source/android-and-linux-re-merge-

into-one-operating-system/10625

http://developer.android.com/index.html
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/org.eclipse.platform.doc.isv.3.1.pdf.zip
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/org.eclipse.platform.doc.isv.3.1.pdf.zip
http://www.vogella.de/articles/EclipsePlugIn/article.html
https://lwn.net/Articles/472984/
http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/
http://www.omgubuntu.co.uk/2011/12/how-to-connect-your-android-ice-cream-sandwich-phone-to-ubuntu-for-file-access/
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Android_os
http://www.zdnet.com/blog/open-source/android-and-linux-re-merge-into-one-operating-system/10625
http://www.zdnet.com/blog/open-source/android-and-linux-re-merge-into-one-operating-system/10625

ANDROID SDK INSTALLER 52

Todd Wasserman. (2012). Android Tops 50% Market Share in the U.S. [STUDY]. Retrieved

from: http://mashable.com/2012/04/04/android-breaks-50-market-share/

James E. Bromberger. (2012). Debian Wheezy: US$19 Billion. Your price… FREE!.

Retrieved from: http://blog.james.rcpt.to/2012/02/13/debian-wheezy-us19-billion-

your-price-free/

http://mashable.com/2012/04/04/android-breaks-50-market-share/
http://blog.james.rcpt.to/2012/02/13/debian-wheezy-us19-billion-your-price-free/
http://blog.james.rcpt.to/2012/02/13/debian-wheezy-us19-billion-your-price-free/

ANDROID SDK INSTALLER 53

Appendix: android-sdk-installer

1. #!/bin/bash -e

2. #

3. # android-sdk-installer - Utility to automatically install and configure Android

4. # SDK, Eclipse ADT Plugin, add hardware support for devices as well as add MTP

5. # support.

6. #

7. # Copyright © 2012 Adnan Hodzic <adnan@foolcontrol.org>

8. #

9. # This program is free software: you can redistribute it and/or modify

10. # it under the terms of the GNU General Public License as published by

11. # the Free Software Foundation, either version 3 of the License, or

12. # (at your option) any later version.

13. #

14. # This program is distributed in the hope that it will be useful,

15. # but WITHOUT ANY WARRANTY; without even the implied warranty of

16. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17. # GNU General Public License for more details.

18. #

19. # You should have received a copy of the GNU General Public License

20. # along with this program. If not, see <http://www.gnu.org/licenses/>.

21.

22. ASI="Android SDK Installer"

23.

24. ASI_VERSION="0.1"

25.

26. DIV="\n--\n";

27.

28. # Check if user is root or not

29.

30. ROOT_UID=0

31. if ["$UID" -ne "$ROOT_UID"]

32. then

33. echo -e $DIV

34. echo -e "Please run $ASI as root.

35. \n(i.e: sudo android-sdk-installer)

36. \nInstallation aborted"

37. echo -e $DIV

38. exit 1

39. else

40. echo -e $DIV

41. echo -e "Welcome to $ASI $ASI_VERSION

42. \nThe installer will guide you through the rest of the process."

43. fi

44.

45. # Detect architecture, if x86_64 install its dependencies

ANDROID SDK INSTALLER 54

46.

47. ARCH="$(uname -m)"

48.

49. PACKAGE=ia32-libs

50.

51. #PACKAGE=ia32-libs

52.

53. # "PACKAGE=ia32-libs" needs to be perfected, due to package name (ia32-libs)

54. # because of hyphen (-) in its name results aren't accurate and will report it's

55. # installed even when its not

56.

57. if ["$(dpkg-architecture -qDEB_BUILD_ARCH)" == "amd64"]

58. then

59. if dpkg -s "$PACKAGE" 2>/dev/null 1>/dev/null

60. then

61.

62. echo -e $DIV

63. echo -e "\n$ARCH architecture detected and its dependencies are satisfied\n"

64. else

65. echo -e $DIV

66.

67. read -p "You're running $ARCH arhitecture, there are dependencies

68. ($PACKAGE) which are not present on your sistem? Install?

69.

70. [Y]es, [N]o, [S]kip: " response

71.

72. case $response in

73.

74. [Yy]*)

75. echo -e "\nOkay, will now install $PACKAGE\n"

76. apt-get install $PACKAGE

77. ;;

78.

79. [Nn]*)

80. echo -e "\nPlease install $PACKAGE manually"

81. ;;

82.

83. [Ss]*) ;;

84.

85. *)

86. echo "Wrong value: installaton aborted."

87. exit 1;;

88.

89. esac

90. fi

91. fi

92.

93. # Pre-cleaning process

ANDROID SDK INSTALLER 55

94.

95. SDK_R18="android-sdk_r18-linux.tgz"

96. SDK_15="android-15_r03.zip"

97. SDK_21="android-2.1_r03-linux.zip"

98. ADT_RM="ADT-18.0.0.zip"

99.

100. if [-f $SDK_R18]

101. then

102.

103. echo -e $DIV

104.

105. read -p "Installer found \"$SDK_R18\" file which might defect rest of

106. the installation process, remove?

107.

108. [Y]es, [N]o, [S]kip :" response

109.

110. case $response in

111.

112. [Yy]*)

113. rm -f $SDK_R18 2>/dev/null

114. ;;

115.

116. [Nn]*)

117. chmod 666 $SDK_R18

118. ;;

119.

120. [Ss]*)

121. chmod 666 $SDK_R18

122. ;;

123.

124. *)

125. echo "Wrong value: installaton aborted."

126. exit 1

127. ;;

128.

129. esac

130. fi

131.

132. if [-f $SDK_15]

133. then

134.

135. echo -e $DIV

136.

137. read -p "Installer found \"$SDK_15\" file which might defect rest of

138. the installation process, remove?

139.

140. [Y]es, [N]o, [S]kip :" response

141.

ANDROID SDK INSTALLER 56

142. case $response in

143.

144. [Yy]*)

145. rm -f $SDK_15 2>/dev/null

146. ;;

147.

148. [Nn]*)

149. chmod 666 $SDK_15

150. ;;

151.

152. [Ss]*)

153. chmod 666 $SDK_15

154. ;;

155.

156. *)

157. echo "Wrong value: installaton aborted."

158. exit 1

159. ;;

160.

161. esac

162. fi

163.

164. if [-f $SDK_21]

165. then

166.

167. echo -e $DIV

168.

169. read -p "Installer found \"$SDK_21\" file which might defect rest of

170. the installation process, remove?

171.

172. [Y]es, [N]o, [S]kip :" response

173.

174. case $response in

175.

176. [Yy]*)

177. rm -f $SDK_21 2>/dev/null

178. ;;

179.

180. [Nn]*)

181. chmod 666 $SDK_21

182. ;;

183.

184. [Ss]*)

185. chmod 666 $SDK_21

186. ;;

187.

188. *)

189. echo "Wrong value: installaton aborted."

ANDROID SDK INSTALLER 57

190. exit 1

191. ;;

192.

193. esac

194. fi

195.

196. if [-f $ADT_RM]

197. then

198.

199. echo -e $DIV

200.

201. read -p "Installer found \"$ADT_RM\" file which might defect rest of

202. the installation process, remove?

203.

204. [Y]es, [N]o, [S]kip :" response

205.

206. case $response in

207.

208. [Yy]*)

209. rm -f $ADT_RM 2>/dev/null

210. ;;

211.

212. [Nn]*)

213. chmod 666 $ADT_RM

214. ;;

215.

216. [Ss]*)

217. chmod 666 $ADT_RM

218. ;;

219.

220. *)

221. echo "Wrong value: installaton aborted."

222. exit 1

223. ;;

224.

225. esac

226. fi

227.

228. # Is there a /opt/android-sdk-linux directory?

229.

230. DIRECTORY=/opt/android-sdk-linux

231.

232. if [-d "$DIRECTORY"]

233. then

234.

235. echo -e $DIV

236.

237. read -p "Directory \"$DIRECTORY\" already exists.

ANDROID SDK INSTALLER 58

238.

239. Installer will ovewrite this directory with new installation data, backup will

240. be stored in \"$DIRECTORY.sdk.bak\", continue?

241.

242. [Y]es, [N]o, [S]kip :" response

243.

244. case $response in

245.

246. [Yy]*)

247. # backup and/or remove existing /opt/android-sdk-linux directory

248. cp -R $DIRECTORY $DIRECTORY.sdk.bak

249. rm -Rf $DIRECTORY 2>/dev/null

250. ;;

251.

252. [Nn]*)

253. echo -e "\nCan't continue without access to \"$DIRECTORY\" directory"

254. exit 1

255. ;;

256.

257. [Ss]*) ;;

258.

259. *)

260. echo "Wrong value: installaton aborted."

261. exit 1

262. ;;

263. esac

264.

265. else

266. mkdir $DIRECTORY

267. chmod 755 -R $DIRECTORY

268. fi

269.

270. echo -e $DIV

271.

272. # Check if SDK/Tools directory is empty

273.

274. TOOL="/opt/android-sdk-linux/tools"

275.

276. STARTER="Android SDK Starter Package"

277.

278. if [-z "ls $TOOL"]

279. then

280. echo -e "\n\nAndroid SDK Tools seem to be present, moving forward\n"

281. else

282.

283. read -p "Install $STARTER?

284.

285. Provides tools such as \"android\" (Android SDK and AVD Manager),

ANDROID SDK INSTALLER 59

286. \"emulator\" (Android Emulator), \"ddms\" (Dalvik Debug Monitor), et cetera ...

287.

288. [Y]es, [N]o, [S]kip: " response

289.

290. case $response in

291.

292. [Yy]*)

293. echo -e "\nWill now download the $STARTER\n"

294. wget http://dl.google.com/android/android-sdk_r18-linux.tgz

295. tar -xzvf android-sdk_r18-linux.tgz -C /opt/

296. echo -e "\n$STARTER successfully installed"

297. ;;

298.

299. [Nn]*)

300. echo -e "\nInstallation aborted:

301. \nCan't continue without Android Tools!\n"

302. exit 1

303. ;;

304.

305. [Ss]*)

306. echo -e "\nReluctantly skipping over this step\n"

307. ;;

308.

309. *) echo "Wrong value: installaton aborted."

310. exit 1

311. ;;

312.

313. esac

314. fi

315.

316. echo -e $DIV

317.

318. # Install latest Android API?

319.

320. LATEST_REV="4.0.3 API 15, revision 3"

321. LATEST_REV_URL=http://dl.google.com/android/repository/android-15_r03.zip

322.

323. read -p "Install latest Android API $LATEST_REV?

324. (supports all the latest features)

325.

326. [Y]es, [N]o, [S]kip : " response

327.

328. case $response in

329.

330. [Yy]*)

331. # Download latest Android SDK

332. echo -e "\nWill now download $LATEST_REV\n"

333. wget $LATEST_REV_URL

ANDROID SDK INSTALLER 60

334. unzip android-15_r03.zip -d /opt/android-sdk-linux/platforms

335. echo -e "\nSuccessfully installed Android API $LATEST_REV"

336. ;;

337.

338. [Nn]*)

339. echo -e "Android $LATEST_REV did NOT install\n"

340. ;;

341.

342. [Ss]*) ;;

343.

344. *) echo "Wrong value: installaton aborted."

345. exit 1

346. ;;

347.

348. esac

349.

350. echo -e $DIV

351.

352. CLASSIC_REV="2.1, revision 03"

353. CLASSIC_REV_URL=http://dl.google.com/android/repository/android-2.1_r03-linux.zip

354.

355. read -p "Install Android API $CLASSIC_REV? (supported by ~97% phones and tablets)

356.

357. [Y]es, [N]o, [S]kip: " response

358.

359. case $response in

360.

361. [Yy]*)

362. # Download Android 2.1 SDK

363. echo -e "\nWill now download $CLASSIC_REV\n"

364. wget $CLASSIC_REV_URL

365. # ako nema android-sdk-linux/platforms moras napravit?

366. unzip android-2.1_r03-linux.zip -d /opt/android-sdk-linux/platforms

367. echo -e "\nSuccessfully installed Android API $CLASSIC_VERSION"

368. ;;

369.

370. [Nn]*)

371. echo -e "Android $CLASSIC_REV did NOT install\n"

372. ;;

373.

374. [Ss]*) ;;

375.

376. *) echo "Wrong value: installaton aborted."

377. exit 1

378. ;;

379.

380. esac

381.

ANDROID SDK INSTALLER 61

382. echo -e $DIV

383.

384. # Configure PATH environmental variable

385.

386. PATHV=/etc/profile.d/android-sdk.sh

387.

388. read -p "Configure PATH environmental variable?

389.

390. Will allow you to run tools such as \"android\" (Android SDK and AVD Manager),

391. \"emulator\" (Android Emulator), \"ddms\" (Dalvik Debug Monitor) directly from

392. Terminal.

393.

394. [Y]es, [N]o, [S]kip: " response

395.

396. case $response in

397.

398. [Yy]*)

399. if [-f $PATHV]

400. then

401.

402. read -p "

403. An existing \"$PATHV\" file has been detected in \"/etc/profile.d/\"

404.

405. Installer will overwrite this file, backup will be made and stored in

406. \"$PATHV.sdk.bak\"

407.

408. Continue?

409.

410. [Y]es, [N]o, [S]kip :" response

411.

412. case $response in

413.

414. [Yy]*)

415. # Backup and remove current android-sdk.sh file

416. cp -f $PATHV $PATHV.sdk.bak

417. rm -f $PATHV 2>/dev/null

418. ;;

419.

420. [Nn]*)

421. echo -e "\PATH environmental variable was NOT configured, Goodbye"

422. exit 1

423. ;;

424.

425. [Ss]*) ;;

426.

427. *)

428. echo "Wrong value: installaton aborted."

429. exit 1

ANDROID SDK INSTALLER 62

430. ;;

431.

432. esac

433.

434. else

435.

436. touch $PATHV

437. chmod 644 $PATHV

438.

439. fi

440.

441. # Create android-sdk.sh file

442.

443. echo -n '#!/bin/bash -e

444. # PATH for Android SDK

445. PATH="/opt/android-sdk-linux/tools:/opt/android-sdk-

linux/platforms:$PATH"' > $PATHV

446.

447. # apply PATH without user having to log out

448. export PATH="/opt/android-sdk-linux/tools:/opt/android-sdk-

linux/platforms:$PATH"

449.

450. # make sure permissions are alright

451. chmod -R 755 $DIRECTORY

452.

453. # in future add "sed" here in order to avoid repetitive code

454.

455. echo -e "\nPATH successfully added and configured."

456. ;;

457.

458. [Nn]*)

459. echo -e "\nWon't continue without configuring PATH environmental variable"

460. exit 1

461. ;;

462.

463. [Ss]*) ;;

464.

465. *)

466. echo "Wrong value: installaton aborted."

467. exit 1

468. ;;

469.

470. esac

471.

472. echo -e $DIV

473.

474. # Eclipse and Android ADT plugin installation

475.

ANDROID SDK INSTALLER 63

476. read -p "Install ADT (Android Development Tools) Plugin for Eclipse IDE?

477.

478. [Y]es, [N]o, [S]kip: " response

479.

480. case $response in

481.

482. [Yy]*)

483. PACKAGE=Eclipse

484.

485. if dpkg -s "$PACKAGE" 2>/dev/null 1>/dev/null

486. then

487. echo -e "\n$PACKAGE is installed.\nWill now download Eclipse ADT Plugin\n"

488.

489. wget http://dl.google.com/android/ADT-18.0.0.zip

490. unzip ADT-18.0.0.zip -d /tmp/

491.

492. cp /tmp/features/*.jar /usr/share/eclipse/features/

493. cp /tmp/plugins/*.jar /usr/share/eclipse/plugins/

494. # see what to do with rest of the files web/ index.html & site.xml

495.

496. else

497.

498. read -p "

499. $PACKAGE IDE is NOT installed, would you like to install it?

500. [Y]es, [N]o, [S]kip :" response

501.

502. case $response in

503.

504. [Yy]*)

505. apt-get install eclipse

506.

507. echo -e "\nOkay, will now download Eclipse ADT Plugin\n"

508.

509. wget http://dl.google.com/android/ADT-18.0.0.zip

510. unzip ADT-18.0.0.zip -d /tmp/

511.

512. cp /tmp/features/*.jar /usr/share/eclipse/features/

513. cp /tmp/plugins/*.jar /usr/share/eclipse/plugins/

514. # see what to do with rest of the files web/ index.html & site.xml

515. ;;

516.

517. [Nn]*)

518. echo -e "\nADT Plugin can't be installed without $PACKAGE IDE"

519. exit 1

520. ;;

521.

522. [Ss]*) ;;

523.

ANDROID SDK INSTALLER 64

524. *)

525. echo "Wrong value: installaton aborted."

526. exit 1

527. ;;

528.

529. esac

530. fi

531. esac

532.

533. echo -e $DIV

534.

535. # Adds Hardware Device support by adding udev rules

536.

537. RULES=/etc/udev/rules.d/51-android.rules

538.

539. read -p "Add hardware support for you Android devices?

540.

541. [Y]es, [N]o, [S]kip :" response

542.

543. case $response in

544.

545. [Yy]*)

546. echo "Adding hardware support"

547. ;;

548.

549. [Nn]*)

550. echo "Hardware support was NOT added"

551. ;;

552.

553. [Ss]*) ;;

554.

555. *)

556. echo "Wrong value: installaton aborted."

557. exit 1

558. ;;

559.

560. esac

561.

562. # Check if the "rules" file already exists

563. if [-f $RULES];

564. then

565.

566. read -p "

567. An existing \"51-android.rules\" file has been detected in \"/etc/udev/rules.d/\"

568.

569. Installer will overwrite this file, backup will be made and stored in

570. \"$RULES.sdk.bak\"

571.

ANDROID SDK INSTALLER 65

572. Continue?

573.

574. [Y]es, [N]o, [S]kip :" response

575.

576. case $response in

577.

578. [Yy]*)

579. # backup and remove current 51-android.rules file

580. cp -f $RULES $RULES.sdk.bak

581. rm -f $RULES 2>/dev/null

582. ;;

583.

584. [Nn]*) echo -e "\nInstaller did NOT add hardware support, Goodbye"

585. exit 1

586. ;;

587.

588. [Ss]*) ;;

589.

590. *) echo "Wrong value: installaton aborted."

591. exit 1

592. ;;

593.

594. esac

595.

596. else

597.

598. # create rules files and give it proper permissions

599. touch $RULES

600. chmod 644 $RULES

601.

602. fi

603.

604. # add new 51-android.rules file

605. echo -n '# udev rules which add hardware device support on Linux

606. #

607. # "Using Hardware devices"

608. # (http://developer.android.com/guide/developing/device.html)

609. #

610. # List last updated: May 9, 2012

611.

612. # Acer

613. SUBSYSTEM=="usb", ATTR{idVendor}=="0502", MODE="0666", OWNER="plugdev"

614.

615. # ASUS

616. SUBSYSTEM=="usb", ATTR{idVendor}=="0b05", MODE="0666", OWNER="plugdev"

617.

618. # Dell

619. SUBSYSTEM=="usb", ATTR{idVendor}=="413c", MODE="0666", OWNER="plugdev"

ANDROID SDK INSTALLER 66

620.

621. # Foxconn

622. SUBSYSTEM=="usb", ATTR{idVendor}=="0489", MODE="0666", OWNER="plugdev"

623.

624. # Fujitsu

625. SUBSYSTEM=="usb", ATTR{idVendor}=="04c5", MODE="0666", OWNER="plugdev"

626.

627. # Fujitsu Toshiba

628. SUBSYSTEM=="usb", ATTR{idVendor}=="04c5", MODE="0666", OWNER="plugdev"

629.

630. # Garmin-Asus

631. SUBSYSTEM=="usb", ATTR{idVendor}=="091e", MODE="0666", OWNER="plugdev"

632.

633. # Google

634. SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", MODE="0666", OWNER="plugdev"

635.

636. # Hisense

637. SUBSYSTEM=="usb", ATTR{idVendor}=="109b", MODE="0666", OWNER="plugdev"

638.

639. # HTC

640. SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", MODE="0666", OWNER="plugdev"

641.

642. # Huawei

643. SUBSYSTEM=="usb", ATTR{idVendor}=="12d1", MODE="0666", OWNER="plugdev"

644.

645. # K-Touch

646. SUBSYSTEM=="usb", ATTR{idVendor}=="24e3", MODE="0666", OWNER="plugdev"

647.

648. # KT Tech

649. SUBSYSTEM=="usb", ATTR{idVendor}=="2116", MODE="0666", OWNER="plugdev"

650.

651. # Kyocera

652. SUBSYSTEM=="usb", ATTR{idVendor}=="0482", MODE="0666", OWNER="plugdev"

653.

654. # Lenovo

655. SUBSYSTEM=="usb", ATTR{idVendor}=="17ef", MODE="0666", OWNER="plugdev"

656.

657. # LG

658. SUBSYSTEM=="usb", ATTR{idVendor}=="1004", MODE="0666", OWNER="plugdev"

659.

660. # Motorola

661. SUBSYSTEM=="usb", ATTR{idVendor}=="22b8", MODE="0666", OWNER="plugdev"

662.

663. # NEC

664. SUBSYSTEM=="usb", ATTR{idVendor}=="0409", MODE="0666", OWNER="plugdev"

665.

666. # Nook

667. SUBSYSTEM=="usb", ATTR{idVendor}=="2080", MODE="0666", OWNER="plugdev"

ANDROID SDK INSTALLER 67

668.

669. # Nvidia

670. SUBSYSTEM=="usb", ATTR{idVendor}=="0955", MODE="0666", OWNER="plugdev"

671.

672. # OTGV

673. SUBSYSTEM=="usb", ATTR{idVendor}=="2257", MODE="0666", OWNER="plugdev"

674.

675. # Pantech

676. SUBSYSTEM=="usb", ATTR{idVendor}=="10a9", MODE="0666", OWNER="plugdev"

677.

678. # Pegatron

679. SUBSYSTEM=="usb", ATTR{idVendor}=="1d4d", MODE="0666", OWNER="plugdev"

680.

681. # Philips

682. SUBSYSTEM=="usb", ATTR{idVendor}=="0471", MODE="0666", OWNER="plugdev"

683.

684. # PMC-Sierra

685. SUBSYSTEM=="usb", ATTR{idVendor}=="04da", MODE="0666", OWNER="plugdev"

686.

687. # Qualcomm

688. SUBSYSTEM=="usb", ATTR{idVendor}=="05c6", MODE="0666", OWNER="plugdev"

689.

690. # SK Telesys

691. SUBSYSTEM=="usb", ATTR{idVendor}=="1f53", MODE="0666", OWNER="plugdev"

692.

693. # Samsung

694. SUBSYSTEM=="usb", ATTR{idVendor}=="04e8", MODE="0666", OWNER="plugdev"

695.

696. # Sharp

697. SUBSYSTEM=="usb", ATTR{idVendor}=="04dd", MODE="0666", OWNER="plugdev"

698.

699. # Sony

700. SUBSYSTEM=="usb", ATTR{idVendor}=="054c", MODE="0666", OWNER="plugdev"

701.

702. # Sony Ericsson

703. SUBSYSTEM=="usb", ATTR{idVendor}=="0fce", MODE="0666", OWNER="plugdev"

704.

705. # Teleepoch

706. SUBSYSTEM=="usb", ATTR{idVendor}=="2340", MODE="0666", OWNER="plugdev"

707.

708. # Toshiba

709. SUBSYSTEM=="usb", ATTR{idVendor}=="0930", MODE="0666", OWNER="plugdev"

710.

711. # ZTE

712. SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", MODE="0666", OWNER="plugdev"

713. ' > $RULES

714.

715. # in future add "sed" in order to avoid repetitive code

ANDROID SDK INSTALLER 68

716.

717. # provide all groups, users and others with read permissions for this file

718. chmod a+r $RULES

719.

720. echo -e "\nHardware device support successfully installed"

721.

722. echo -e $DIV

723.

724. # add MTP support

725.

726. read -p "Add MTP support? (enables USB mass storage support on Android >= 4.0)

727.

728. [Y]es, [N]o, [S]kip: " response

729.

730. case $response in

731.

732. [Yy]*)

733. PACKAGE=mtpfs

734.

735. if [dpkg -s "$PACKAGE" 2>/dev/null 1>/dev/null]

736. then

737. echo -e "\nIt seems you have all the needed packages installed"

738. else

739.

740. read -p "

741. Packages seem to be missing, install required packages?

742. [Y]es, [N]o :" response

743.

744. case $response in

745.

746. [Yy]*)

747. apt-get install mtp-tools mtpfs

748. ;;

749.

750. [Nn]*)

751. echo "Did not install MTP support"

752. # exit 1

753. ;;

754.

755. *)

756. echo "Wrong value: installaton aborted."

757. exit 1

758. ;;

759.

760. esac

761.

762. echo -e "\nMTP support successfully installed"

ANDROID SDK INSTALLER 69

763.

764. # in future add device name to /media dir

765. # fix permissions and add user to fuse group

766. # edit fuse.conf and .bashrc

767. fi

768. ;;

769.

770. [Nn]*)

771. echo "Did NOT enable MTP support"

772. exit 1

773. ;;

774.

775. [Ss]*) ;;

776.

777. *)

778. echo "Wrong value: installation aborted."

779. exit 1

780. ;;

781.

782. esac

783.

784. # clean up

785.

786. SDK_R18="android-sdk_r18-linux.tgz"

787. SDK_15="android-15_r03.zip"

788. SDK_21="android-2.1_r03-linux.zip"

789. ADT_RM="ADT-18.0.0.zip"

790.

791. if [-f $SDK_R18]

792. then

793.

794. echo -e $DIV

795.

796. read -p "Installer left \"$SDK_R18\" file, would you like to remove it?

797.

798. [Y]es, [N]o, [S]kip :" response

799.

800. case $response in

801.

802. [Yy]*)

803. rm -f $SDK_R18 2>/dev/null

804. ;;

805.

806. [Nn]*)

807. chmod 666 $SDK_R18

808. ;;

809.

810. [Ss]*)

ANDROID SDK INSTALLER 70

811. chmod 666 $SDK_R18

812. ;;

813.

814. *)

815. echo "Wrong value: installaton aborted."

816. exit 1

817. ;;

818.

819. esac

820. fi

821.

822. if [-f $SDK_15]

823. then

824.

825. echo -e $DIV

826.

827. read -p "Installer found \"$SDK_15\" file which might defect rest of

828. the installation process, remove?

829.

830. [Y]es, [N]o, [S]kip :" response

831.

832. case $response in

833.

834. [Yy]*)

835. rm -f $SDK_15 2>/dev/null

836. ;;

837.

838. [Nn]*)

839. chmod 666 $SDK_15

840. ;;

841.

842. [Ss]*)

843. chmod 666 $SDK_15

844. ;;

845.

846. *)

847. echo "Wrong value: installaton aborted."

848. exit 1

849. ;;

850.

851. esac

852. fi

853.

854. if [-f $SDK_21]

855. then

856.

857. echo -e $DIV

858.

ANDROID SDK INSTALLER 71

859. read -p "Installer left \"$SDK_21\" file, would you like to remove it?

860.

861. [Y]es, [N]o, [S]kip :" response

862.

863. case $response in

864.

865. [Yy]*)

866. rm -f $SDK_21 2>/dev/null

867. ;;

868.

869. [Nn]*)

870. chmod 666 $SDK_21

871. ;;

872.

873. [Ss]*)

874. chmod 666 $SDK_21

875. ;;

876.

877. *)

878. echo "Wrong value: installaton aborted."

879. exit 1

880. ;;

881.

882. esac

883. fi

884.

885. if [-f $ADT_RM]

886. then

887.

888. echo -e $DIV

889.

890. read -p "Installer left \"$ADT_RM\" file, would you like to remove it?

891.

892. [Y]es, [N]o, [S]kip :" response

893.

894. case $response in

895.

896. [Yy]*)

897. rm -f $ADT_RM 2>/dev/null

898. ;;

899.

900. [Nn]*)

901. chmod 666 $ADT_RM

902. ;;

903.

904. [Ss]*)

905. chmod 666 $ADT_RM

906. ;;

ANDROID SDK INSTALLER 72

907.

908. *)

909. echo "Wrong value: installaton aborted."

910. exit 1

911. ;;

912.

913. esac

914. fi

915.

916. echo -e $DIV

917.

918. echo -e "Installation complete. Feel free to run \"android-sdk-installer\" at any

919. time to (re)configure.\n\nEnjoy!\n";

920.

921. exit 0

